To support preparations for deep space missions like Mars, the US National Aeronautics and Space Administration (NASA) has tasked the Baylor College of Medicine-based Translational Research Institute for Space Health (TRISH) with finding “new approaches and new technologies for the challenges of deep space missions,” TRISH scientist and assistant professor at Baylor College of Medicine’s Centre for Space Medicine Dr Emmanuel Urquieta explains.
TRISH’s primary role is to select and fund early-stage, novel solutions for NASA’s high priority concerns regarding human health. One of these priorities is so-called just-in-time medications, which Urquieta describes as the capability to manufacture “medications from scratch and in real-time” on-board space missions.
Two of these on-demand medications projects recently received two-year funding from TRISH. The first is from the Massachusetts Institute of Technology (MIT) and creates just-in-time medications from gastric resident microbial systems, the second from the University of California, Davis (UC Davis) involves genetically modifying and growing lettuces to produce associated drugs. Most commercially available medicines have shelf lives of two years or less. Urquieta explains that this is not currently an issue for astronauts residing in low orbit on or near to the International Space Station (ISS) because the ISS is kept fully stocked with medicines through monthly resupplies from earth.
NASA has a list of 100 conditions that could arise in deep space ranging from nail delamination to cardiac arrest.
However, this short shelf life poses a challenge for “deep space missions, such as the mission to Mars, [which] is going to be a three-year mission, [where] you will need to take all the food, medications and water for the entire mission, because there is nowhere to stop to resupply,” he said.
Even if the shelf life of medications could be extended to more than three years, storage, mass and power limitations mean it is not possible for the spacecraft to carry a whole pharmacy of prescription and over-the-counter medications that the astronauts might need for three years, as well as provide sufficient refrigeration storage. Urquieta notes that NASA has a list of 100 conditions that could arise in deep space ranging from nail delamination to cardiac arrest.
As a result there is a need to move to develop the capacity to manufacture therapeutics on demand during a long, deep space mission. So if a medical condition arises then the astronauts can self-sufficiently and easily produce pharma products for administration within 24 hours.